Exercise 52

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(t)=\left(t^{2}-4\right)^{3}, \quad[-2,3]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}\left(t^{2}-4\right)^{3} \\
& =3\left(t^{2}-4\right)^{2} \cdot \frac{d}{d t}\left(t^{2}-4\right) \\
& =3\left(t^{2}-4\right)^{2} \cdot(2 t) \\
& =6 t\left(t^{2}-4\right)^{2}
\end{aligned}
$$

Set $f^{\prime}(t)=0$ and solve for t.

$$
\begin{gathered}
6 t\left(t^{2}-4\right)^{2}=0 \\
6 t(t+2)^{2}(t-2)^{2}=0 \\
t=\{-2,0,2\}
\end{gathered}
$$

$t=-2$ and $t=0$ and $t=2$ are within $[-2,3]$, so evaluate f at these values.

$$
\begin{aligned}
f(-2) & =\left[(-2)^{2}-4\right]^{3}=0 \\
f(0) & =\left(0^{2}-4\right)^{3}=-64 \\
f(2) & =\left(2^{2}-4\right)^{3}=0
\end{aligned}
$$

Now evaluate the function at the other endpoint of the interval.

$$
f(3)=\left(3^{2}-4\right)^{3}=125 \quad \text { (absolute maximum) }
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[-2,3]$.

The graph of the function below illustrates these results.

